Diaz-Valdes, N. (Nancy)
- Publications
- item.page.relationships.isContributorAdvisorOfPublication
- item.page.relationships.isContributorOfPublication
7 results
Search Results
Now showing 1 - 7 of 7
- Peptide inhibitors of transforming growth factor-beta enhance the efficacy of antitumor immunotherapy(Wiley blackwell, 2009) Dotor, J. (Javier); Berraondo, P. (Pedro); Diaz-Valdes, N. (Nancy); Borras-Cuesta, F. (Francisco); Ruiz, M. (Marta); Aranda, F. (Fernando); Casares, N. (Noelia); Prieto, J. (Jesús); Bezunartea, J. (Jaione); Llopiz, D. (Diana); Sarobe, P. (Pablo); Lasarte, J.J. (Juan José)Transforming growth factor-beta (TGF-beta) is a cytokine with potent immunosuppressive effects and is overexpressed in many tumors. Therefore, development of molecules able to inhibit TGF-beta is of paramount importance to improve the efficacy of antitumor immunotherapy. TGF-beta inhibitor peptides P144 and P17 were combined with the administration of adjuvant molecules poly(I:C) and agonistic anti-CD40 antibodies, and their effect on the growth of E.G7-OVA established tumors and on antitumor immune response was evaluated. Tumor rejection efficacy of a single administration of adjuvants was enhanced from 15 to 70 % when combined with repeated injections of TGF-beta inhibitor peptides. Simultaneous administration of adjuvants and TGF-beta inhibitor peptides was required for maximal therapeutic efficacy. Although tumor cells produced TGF-beta, it was found that the beneficial effect of peptide administration was mainly due to the inhibition of TGF-beta produced by regulatory CD4(+)CD25(+) T cells rather than by tumor cells. The enhanced antitumor effect was accompanied by a higher activity of dendritic cells, natural killer cells and tumor antigen-specific T cells, as well as by a decrease in the number of myeloid-derived suppressor cells. In conclusion, administration of peptide inhibitors of TGF-beta in therapeutic vaccination enhances the efficacy of immunotherapy by increasing antitumor immune responses. These peptide inhibitors may have important applications for current immunotherapeutic strategies.
- Improved dendritic cell-based immunization against hepatitis C virus using peptide inhibitors of interleukin 10(Wiley blackwell, 2011) Riezu-Boj, J.I. (José Ignacio); Echeverria, I. (Itziar); Diaz-Valdes, N. (Nancy); Borras-Cuesta, F. (Francisco); Larrea, E. (Esther); Lerat, H. (Hervé); Prieto, J. (Jesús); Llopiz, D. (Diana); Sarobe, P. (Pablo); Belsue, V. (Virginia); Lopez-Sagaseta, J. (Jacinto); Manterola, L. (Lorea); Pawlotsky, J.M. (Jean-Michel); Lasarte, J.J. (Juan José)The high levels of interleukin 10 (IL-10) present in chronic hepatitis C virus (HCV) infection have been suggested as responsible for the poor antiviral cellular immune responses found in these patients. To overcome the immunosuppressive effect of IL-10 on antigen-presenting cells such as dendritic cells (DCs), we developed peptide inhibitors of IL-10 to restore DC functions and concomitantly induce efficient antiviral immune responses. Two IL-10-binding peptides (p9 and p13) were selected using a phage-displayed library and their capacity to inhibit IL-10 was assessed in a bioassay and in STAT-3 (signal transducer and activator of transcription 3) phosphorylation experiments in vitro. In cultures of human leukocytes where HCV core protein induces the production of IL-10, p13 restored the ability of plasmacytoid DC to produce interferon alpha (IFN-α) after Toll-like receptor 9 (TLR9) stimulation. Similarly, when myeloid DCs were stimulated with CD40L in the presence of HCV core, p9 enhanced IL-12 production by inhibiting HCV core-induced as well as CD40L-induced IL-10. Moreover, in vitro, p13 potentiated the effect of maturation stimuli on human and murine DC, increasing their IL-12 production and stimulatory activity, which resulted in enhanced proliferation and IFN-γ production by responding T-cells. Finally, immunization with p13-treated murine DC induced stronger anti-HCV T-cell responses not only in wildtype mice but also in HCV transgenic mice and in mice transiently expressing HCV core in the liver. CONCLUSION: These results suggest that IL-10 inhibiting peptides may have important applications to enhance anti-HCV immune responses by restoring the immunostimulatory capabilities of DC.
- Monocyte-derived dendritic cells from HCV-infected patients transduced with an adenovirus expressing NS3 are functional when stimulated with the TLR3 ligand poly(I:C)(Blackwell Publishing, 2008) Civeira, M.P. (María Pilar); Riezu-Boj, J.I. (José Ignacio); Zabaleta, A. (Aintzane); Silva, L. (Leyre); Echeverria, I. (Itziar); Diaz-Valdes, N. (Nancy); Borras-Cuesta, F. (Francisco); Prieto, J. (Jesús); Sarobe, P. (Pablo); Lasarte, J.J. (Juan José)Dendritic cells (DC) transfected with an adenovirus encoding hepatitis C virus (HCV) NS3 protein (AdNS3) induce potent antiviral immune responses when used to immunize mice. However, in HCV infected patients, controversial results have been reported regarding the functional properties of monocyte-derived DC (MoDC), a cell population commonly used in DC vaccination protocols. Thus, with the aim of future vaccination studies we decided to characterize MoDC from HCV patients transfected with AdNS3 and stimulated with the TLR3 ligand poly(I:C). Phenotypic and functional properties of these cells were compared with those from MoDC obtained from uninfected individuals. PCR analysis showed that HCV RNA was negative in MoDC from patients after the culture period. Also, phenotypic analysis of these cells showed lower expression of CD80, CD86, and CD40, but similar expression of HLA-DR molecules as compared to MoDC from uninfected individuals. Functional assays of MoDC obtained from patients and controls showed a similar ability to activate allogeneic lymphocytes or to produce IL-12 and IL-10, although lower IFN-alpha levels were produced by cells from HCV patients after poly(I:C) stimulation. Moreover, both groups of MoDC induced similar profiles of IFN-gamma and IL-5 after stimulation of allogeneic T-cells. Finally, migration assays did not reveal any difference in their ability to respond to CCL21 chemokine. In conclusion, MoDC from HCV patients are functional after transduction with AdNS3 and stimulation with poly(I:C). These findings suggest that these cells may be useful for therapeutic vaccination in chronic HCV infection.
- Adjuvant combination and antigen targeting as a strategy to induce polyfunctional and high-avidity T-cell responses against poorly immunogenic tumors(American association for cancer research, 2011) Riezu-Boj, J.I. (José Ignacio); Diaz-Valdes, N. (Nancy); Mansilla, C. (Cristina); Borras-Cuesta, F. (Francisco); Ruiz, M. (Marta); Martinez, M. (Marta); Durantez, M. (Maika); Aranda, F. (Fernando); Prieto, J. (Jesús); Bezunartea, J. (Jaione); Llopiz, D. (Diana); Sarobe, P. (Pablo); Lasarte, J.J. (Juan José)Low antigen expression and an absence of coimmunostimulatory signals may be partly responsible for the low immunogenicity of many tumors. It may be possible to overcome this situation by defining a combination of adjuvants and antigens that can activate a high-avidity antitumor response. Using the poorly immunogenic B16-OVA melanoma cells as tumor model, we tested different combinations of adjuvants and antigens to treat established tumors. In the absence of exogenous antigens, repeated administration of the TLR7 ligand Imiquimod together with anti-CD40 agonistic antibodies activated only innate immunity, which was insufficient to reject intradermal tumors. Administering this adjuvant combination together with OVA as a tumor antigen induced T-cell responses that delayed tumor growth. However, administering a combination of anti-CD40 plus TLR3 and TLR7 ligands, together with antigen targeting to dendritic cells through TLR4, was sufficient to induce tumor rejection in 50% of mice. This response was associated with a greater activation of innate immunity and induction of high-avidity polyfunctional CD8(+) T-cell responses, which each contributed to tumor rejection. This therapy activated T-cell responses not only against OVA, which conferred protection against a rechallenge with B16-OVA cells, but also activated T-cell responses against other melanoma-associated antigens. Our findings support the concept that multiple adjuvant combination and antigen targeting may be a useful immunotherapeutic strategy against poorly immunogenic tumors.
- Induction of monocyte chemoattractant protein-1 and interleukin-10 by TGFbeta1 in melanoma enhances tumor infiltration and immunosuppression(American Association for Cancer Research, 2011) Riezu-Boj, J.I. (José Ignacio); Dotor, J. (Javier); Diaz-Valdes, N. (Nancy); Borras-Cuesta, F. (Francisco); Aranda, F. (Fernando); Basagoiti, M. (María); Sarobe, P. (Pablo); Monreal, I. (Iñaki); Feijoo, E. (Esperanza)Melanoma progression is associated with the expression of different growth factors, cytokines, and chemokines. Because TGFβ1 is a pleiotropic cytokine involved not only in physiologic processes but also in cancer development, we analyzed in A375 human melanoma cells, the effect of TGFβ1 on monocyte chemoattractant protein-1 (MCP-1) and interleukin-10 (IL-10) expression, two known factors responsible for melanoma progression. TGFβ1 increased the expression of MCP-1 and IL-10 in A375 cells, an effect mediated by the cross-talk between Smad, PI3K (phosphoinositide 3-kinase)/AKT, and BRAF-MAPK (mitogen activated protein kinase) signaling pathways. Supernatants from TGFβ1-treated A375 cells enhanced MCP-1-dependent migration of monocytes, which, in turn, expressed high levels of TGF,β1, bFGF, and VEGF mRNA. Moreover, these supernatants also inhibited functional properties of dendritic cells through IL-10-dependent mechanisms. When using in vitro, the TGFβ1-blocking peptide P144, TGFβ1-dependent Smad3 phosphorylation, and expression of MCP-1 and IL-10 were inhibited. In vivo, treatment of A375 tumor-bearing athymic mice with P144 significantly reduced tumor growth, associated with a lower macrophage infiltrate and decreased intratumor MCP-1 and VEGF levels, as well as angiogenesis. Finally, in C57BL/6 mice with B16-OVA melanoma tumors, when administered with immunotherapy, P144 decreased tumor growth and intratumor IL-10 levels, linked to enhanced activation of dendritic cells and natural killer cells, as well as anti-OVA T-cell responses. These results show new effects of TGFβ1 on melanoma cells, which promote tumor progression and immunosuppression, strongly reinforcing the relevance of this cytokine as a molecular target in melanoma.
- Harnessing high density lipoproteins to block transforming growth factor beta and to inhibit the growth of liver tumor metastases(Public Library of Science, 2014-05) Dotor, J. (Javier); Berraondo, P. (Pedro); Gomar, C. (Celia); Diaz-Valdes, N. (Nancy); Frank, K. (Kathrin); Umansky, V. (Viktor); Aranda, F. (Fernando); Ardaiz, N. (Nuria); Prieto, J. (Jesús); Medina-Echeverz, J. (José); Fioravanti, J. (Jessica)Transforming growth factor β (TGF-β) is a powerful promoter of cancer progression and a key target for antitumor therapy. As cancer cells exhibit active cholesterol metabolism, high density lipoproteins (HDLs) appear as an attractive delivery system for anticancer TGFβ-inhibitory molecules. We constructed a plasmid encoding a potent TGF-β-blocking peptide (P144) linked to apolipoprotein A-I (ApoA-I) through a flexible linker (pApoLinkerP144). The ApoLinkerP144 sequence was then incorporated into a hepatotropic adeno-associated vector (AAVApoLinkerP144). The aim was to induce hepatocytes to produce HDLs containing a modified ApoA-I capable of blocking TGF-β. We observed that transduction of the murine liver with pApoLinkerP144 led to the appearance of a fraction of circulating HDL containing the fusion protein. These HDLs were able to attenuate TGF-β signaling in the liver and to enhance IL-12 -mediated IFN-γ production. Treatment of liver metastasis of MC38 colorectal cancer with AAVApoLinkerP144 resulted in a significant reduction of tumor growth and enhanced expression of IFN-γ and GM-CSF in cancerous tissue. ApoLinkerP144 also delayed MC38 liver metastasis in Rag2-/-IL2rγ-/- immunodeficient mice. This effect was associated with downregulation of TGF-β target genes essential for metastatic niche conditioning. Finally, in a subset of ret transgenic mice, a model of aggressive spontaneous metastatic melanoma, AAVApoLinkerP144 delayed tumor growth in association with increased CD8+ T cell numbers in regional lymph nodes. In conclusion, modification of HDLs to transport TGF-β-blocking molecules is a novel and promising approach to inhibit the growth of liver metastases by immunological and non-immunological mechanisms.
- Vaccine-induced but not tumor-derived Interleukin-10 dictates the efficacy of Interleukin-10 blockade in therapeutic vaccination(Taylor & Francis, 2015) Infante, S. (Stefany); Diaz-Valdes, N. (Nancy); Ruiz, M. (Marta); Aranda, F. (Fernando); Llopiz, D. (Diana); Sarobe, P. (Pablo); Belsue, V. (Virginia); Lasarte, J.J. (Juan José)Blocking antibodies against immunosuppressive molecules have shown promising results in cancer patients. However, there are not enough data to define those conditions dictating treatment efficacy. In this scenario, IL-10 is a cytokine with controversial effects on tumor growth. Thus, our aim was to characterize in which setting IL-10 blockade may potentiate the beneficial effects of a therapeutic vaccine In the IL-10-expressing B16-OVA and TC-1 P3 (A15) tumor models, therapeutic vaccination with tumor antigens plus the TLR7 ligand Imiquimod increased IL-10 production. Although blockade of IL-10 signal with anti-IL-10R antibodies did not inhibit tumor growth, when combined with vaccination it enhanced tumor rejection, associated with stronger innate and adaptive immune responses. Interestingly, a similar enhancement on immune responses was observed after simultaneous vaccination and IL-10 blockade in naive mice. However, when using vaccines containing as adjuvants the TLR3 ligand poly(I:C) or anti-CD40 agonistic antibodies, despite tumor IL-10 expression, anti-IL-10R antibodies did not provide any beneficial effect on tumor growth and antitumor immune responses. Of note, as opposed to Imiquimod, vaccination with this type of adjuvants did not induce IL-10 and correlated with a lack of in vitro IL-10 production by dendritic cells (DC). Finally, in B16-OVA-bearing mice, blockade of IL-10 during therapeutic vaccination with a multiple adjuvant combination (MAC) with potent immunostimulatory properties but still inducing IL-10 led to superior antitumor immunity and complete tumor rejection. These results suggest that for therapeutic antitumor vaccination, blockade of vaccine-induced IL-10 is more relevant than tumorassociated IL-10.