de-Miguel, M.J. (María Jesús)
- Publications
- item.page.relationships.isContributorAdvisorOfPublication
- item.page.relationships.isContributorOfPublication
7 results
Search Results
Now showing 1 - 7 of 7
- Rev1 wbdR tagged vaccines against Brucella ovis(2019) Salvador-Bescós, M. (Miriam); Moriyon, I. (Ignacio); Zuñiga-Ripa, A. (Amaia); Aragón-Aranda, B. (Beatriz); de-Miguel, M.J. (María Jesús); Muñoz, P. (Pilar); Iriarte-Cilveti, M. (Maite); Martinez-Gomez, E. (Estrella); Conde-Alvarez, R. (Raquel)Sheep brucellosis is a worldwide extended disease caused by B. melitensis and B. ovis, two species respectively carrying smooth or rough lipopolysaccharide. Vaccine B. melitensis Rev1 is used against B. melitensis and B. ovis but induces an anti-smooth-lipopolysaccharide response interfering with B. melitensis serodiagnosis, which precludes its use against B. ovis where B. melitensis is absent. In mice, Rev1 deleted in wbkC (Brucella lipopolysaccharide formyl-transferase) and carrying wbdR (E. coli acetyl-transferase) triggered antibodies that could be differentiated from those evoked by wild-type strains, was comparatively attenuated and protected against B. ovis, suggesting its potential as a B. ovis vaccine.
- Correction: Rev1 wbdR tagged vaccines against Brucella ovis(Springer Nature, 2020) Salvador-Bescós, M. (Miriam); Moriyon, I. (Ignacio); Zuñiga-Ripa, A. (Amaia); Aragón-Aranda, B. (Beatriz); de-Miguel, M.J. (María Jesús); Muñoz, P. (Pilar); Iriarte-Cilveti, M. (Maite); Martinez-Gomez, E. (Estrella); Conde-Alvarez, R. (Raquel)Correction to: Vet Res (2019) 50:95
- The Phospholipid N-Methyltransferase and Phosphatidylcholine Synthase Pathways and the ChoXWV Choline Uptake System Involved in Phosphatidylcholine Synthesis Are Widely Conserved in Most, but Not All Brucella Species(2021) Salvador-Bescós, M. (Miriam); Moriyon, I. (Ignacio); Palacios-Chaves, L. (Leyre); Sholenkamp, C. (Christian); Zuñiga-Ripa, A. (Amaia); Aragón-Aranda, B. (Beatriz); de-Miguel, M.J. (María Jesús); Muñoz, P. (Pilar); Lázaro-Antón, L. (Leticia); Iriarte-Cilveti, M. (Maite); Vences-Guzmán, M.A. (Miguel Ángel); Conde-Alvarez, R. (Raquel)The brucellae are facultative intracellular bacteria with a cell envelope rich in phosphatidylcholine (PC). PC is abundant in eukaryotes but rare in prokaryotes, and it has been proposed that Brucella uses PC to mimic eukaryotic-like features and avoid innate immune responses in the host. Two PC synthesis pathways are known in prokaryotes: the PmtA-catalyzed trimethylation of phosphatidylethanolamine and the direct linkage of choline to CDP-diacylglycerol catalyzed by the PC synthase Pcs. Previous studies have reported that B. abortus and B. melitensis possess non-functional PmtAs and that PC is synthesized exclusively via Pcs in these strains. A putative choline transporter ChoXWV has also been linked to PC synthesis in B. abortus. Here, we report that Pcs and Pmt pathways are active in B. suis biovar 2 and that a bioinformatics analysis of Brucella genomes suggests that PmtA is only inactivated in B. abortus and B. melitensis strains. We also show that ChoXWV is active in B. suis biovar 2 and conserved in all brucellae except B. canis and B. inopinata. Unexpectedly, the experimentally verified ChoXWV dysfunction in B. canis did not abrogate PC synthesis in a PmtA-deficient mutant, which suggests the presence of an unknown mechanism for obtaining choline for the Pcs pathway in Brucella. We also found that ChoXWV dysfunction did not cause attenuation in B. suis biovar 2. The results of these studies are discussed with respect to the proposed role of PC in Brucella virulence and how differential use of the Pmt and Pcs pathways may influence the interactions of these bacteria with their mammalian hosts.
- GFP tagging of Brucella melitensis Rev1 allows the identification of vaccinated sheep(2018) Chacon-Diaz, C. (Carlos); Blasco, J.M. (José María); San-Roman, B. (Beatriz); de-Miguel, M.J. (María Jesús); Muñoz, P. (Pilar); Iriarte-Cilveti, M. (Maite); Zabalza-Barangua, A. (Ana); Grillo, M.J. (María Jesús)Brucellosis is a worldwide zoonosis causing important economic loss and a public health problem. Small ruminants are the preferred hosts of Brucella melitensis and thus the main source of human infections. Effective control of sheep and goat brucellosis has been achieved in several countries through vaccination with the live-attenuated B. melitensis Rev1 vaccine. However, Rev1 induces a long-lasting serological response that hinders the differentiation between infected and vaccinated animals. A Rev1::gfp strain expressing constitutively the Green Fluorescent Protein (GFP) was built by stable insertion of a mini-Tn7-gfp in the glmS-recG non-codifying chromosomal region. An associated indirect ELISA-GFP was developed to identify anti-GFP antibodies in vaccinated animals. The resulting Rev1::gfp kept the biological properties of the Rev1 reference strain, including residual virulence and efficacy in mice, and was readily distinguished from Rev1 and other Brucella field strains by direct visualization under ultraviolet illumination, fluorescence microscopy and a multiplex PCR-GFP. The Rev1::gfp strain did not elicit anti-GFP antibodies itself in lambs but when applied in combination with recombinant GFP induced an intense and long-lasting (>9 months) anti-GFP serological response readily detectable by the ELISA-GFP. Overall, our results confirm that Rev1 GFP-tagging can be a suitable alternative for identifying vaccinated sheep in infected contexts.
- Development of attenuated live vaccine candidates against swine brucellosis in a non‑zoonotic B. suis biovar 2 background(2020) Salvador-Bescós, M. (Miriam); Moriyon, I. (Ignacio); Zuñiga-Ripa, A. (Amaia); Aragón-Aranda, B. (Beatriz); de-Miguel, M.J. (María Jesús); Muñoz, P. (Pilar); Lázaro-Antón, L. (Leticia); Iriarte-Cilveti, M. (Maite); Conde-Alvarez, R. (Raquel)Brucella is a genus of gram-negative bacteria that cause brucellosis. B. abortus and B. melitensis infect domestic rumi‑ nants while B. suis (biovars 1–3) infect swine, and all these bacteria but B. suis biovar 2 are zoonotic. Live attenuated B. abortus S19 and B. melitensis Rev1 are efective vaccines in domestic ruminants, though both can infect humans. How‑ ever, there is no swine brucellosis vaccine. Here, we investigated the potential use as vaccines of B. suis biovar 2 rough (R) lipopolysaccharide (LPS) mutants totally lacking O-chain (Bs2ΔwbkF) or only producing internal O-chain precursors (Bs2Δwzm) and mutants with a smooth (S) LPS defective in the core lateral branch (Bs2ΔwadB and Bs2ΔwadD). We also investigated mutants in the pyruvate phosphate dikinase (Bs2ΔppdK) and phosphoenolpyruvate carboxykinase (Bs2ΔpckA) genes encoding enzymes bridging phosphoenolpyruvate and the tricarboxylic acid cycle. When tested in the OIE mouse model at the recommended R or S vaccine doses (108 and 105 CFU, respectively), CFU/spleen of all LPS mutants were reduced with respect to the wild type and decreased faster for the R than for the S mutants. At those doses, protection against B. suis was similar for Bs2ΔwbkF, Bs2Δwzm, Bs2ΔwadB and the Rev1 control (105 CFU). As described before for B. abortus, B. suis biovar 2 carried a disabled pckA so that a double mutant Bs2ΔppdKΔpckA had the same metabolic phenotype as Bs2ΔppdK and ppdK mutation was enough to generate attenuation. At 105 CFU, Bs2ΔppdK also conferred the same protection as Rev1. As compared to other B. suis vaccine candidates described before, the mutants described here simultaneously carry irreversible deletions easy to identify as vaccine markers, lack antibiotic-resistance markers and were obtained in a non-zoonotic background. Since R vaccines should not elicit antibodies to the S-LPS and wzm mutants carry immunogenic O-chain precursors and did not improve Bs2ΔwbkF, the latter seems a better R vaccine candidate than Bs2Δwzm. However, taking into account that all R vaccines interfere in ELISA and other widely used assays, whether Bs2ΔwbkF is advantageous over Bs2ΔwadB or Bs2ΔppdK requires experi‑ ments in the natural host.
- A Brucella melitensis H38ΔwbkF rough mutant protects against Brucella ovis in rams(2022) Salvador-Bescós, M. (Miriam); Moriyon, I. (Ignacio); Zuñiga-Ripa, A. (Amaia); Aragón-Aranda, B. (Beatriz); Vizcaíno, N. (Nieves); de-Miguel, M.J. (María Jesús); Muñoz, P. (Pilar); Andrés-Barranco, S. (Sara); Barberan, M. (Montserrat); Iriarte-Cilveti, M. (Maite); Blasco, J.M. (J. M.); Martinez-Gomez, E. (Estrella); Conde-Alvarez, R. (Raquel)Brucella melitensis and Brucella ovis are gram-negative pathogens of sheep that cause severe economic losses and, although B. ovis is non-zoonotic, B. melitensis is the main cause of human brucellosis. B. melitensis carries a smooth (S) lipopolysaccharide (LPS) with an N-formyl-perosamine O-polysaccharide (O-PS) that is absent in the rough LPS of B. ovis. Their control and eradication require vaccination, but B. melitensis Rev 1, the only vaccine available, triggers anti-O-PS antibodies that interfere in the S-brucellae serodiagnosis. Since eradication and serological surveillance of the zoonotic species are priorities, Rev 1 is banned once B. melitensis is eradicated or where it never existed, hampering B. ovis control and eradication. To develop a B. ovis specific vaccine, we investigated three Brucella live vaccine candidates lacking N-formyl-perosamine O-PS: Bov::CAΔwadB (CO2-independent B. ovis with truncated LPS core oligosaccharide); Rev1::wbdRΔwbkC (carrying N-acetylated O-PS); and H38ΔwbkF (B. melitensis rough mutant with intact LPS core). After confirming their attenuation and protection against B. ovis in mice, were tested in rams for efficacy. H38ΔwbkF yielded similar protection to Rev 1 against B. ovis but Bov::CAΔwadB and Rev1::wbdRΔwbkC conferred no or poor protection, respectively. All H38ΔwbkF vaccinated rams developed a protracted antibody response in ELISA and immunoprecipitation B. ovis diagnostic tests. In contrast, all remained negative in Rose Bengal and complement fixation tests used routinely for B. melitensis diagnosis, though some became positive in S-LPS ELISA owing to LPS core epitope reactivity. Thus, H38ΔwbkF is an interesting candidate for the immunoprophylaxis of B. ovis in B. melitensis-free areas.
- Glucose Oxidation to Pyruvate Is Not Essential for Brucella suis Biovar 5 Virulence in the Mouse Model(2021) Moriyon, I. (Ignacio); Zuñiga-Ripa, A. (Amaia); de-Miguel, M.J. (María Jesús); Muñoz, P. (Pilar); Lázaro-Antón, L. (Leticia); Iriarte-Cilveti, M. (Maite); Letesson, J.J. (Jean Jacques); Conde-Alvarez, R. (Raquel); Barbier, T. (Thibault)Brucella species cause brucellosis, a worldwide extended zoonosis. The brucellae are related to free-living and plant-associated α2-Proteobacteria and, since they multiply within host cells, their metabolism probably reflects this adaptation. To investigate this, we used the rodent-associated Brucella suis biovar 5, which in contrast to the ruminant-associated Brucella abortus and Brucella melitensis and other B. suis biovars, is fast-growing and conserves the ancestral Entner-Doudoroff pathway (EDP) present in the plant-associated relatives. We constructed mutants in Edd (glucose-6-phosphate dehydratase; first EDP step), PpdK (pyruvate phosphate dikinase; phosphoenolpyruvate ⇌ pyruvate), and Pyk (pyruvate kinase; phosphoenolpyruvate → pyruvate). In a chemically defined medium with glucose as the only C source, the Edd mutant showed reduced growth rates and the triple Edd-PpdK-Pyk mutant did not grow. Moreover, the triple mutant was also unable to grow on ribose or xylose. Therefore, B. suis biovar 5 sugar catabolism proceeds through both the Pentose Phosphate shunt and EDP, and EDP absence and exclusive use of the shunt could explain at least in part the comparatively reduced growth rates of B. melitensis and B. abortus. The triple Edd-PpdK-Pyk mutant was not attenuated in mice. Thus, although an anabolic use is likely, this suggests that hexose/pentose catabolism to pyruvate is not essential for B. suis biovar 5 multiplication within host cells, a hypothesis consistent with the lack of classical glycolysis in all Brucella species and of EDP in B. melitensis and B. abortus. These results and those of previous works suggest that within cells, the brucellae use mostly 3 and 4 C substrates fed into anaplerotic pathways and only a limited supply of 5 and 6 C sugars, thus favoring the EDP loss observed in some species.