CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I
Palabras clave : 
Substrate reduction therapy
Mouse model
Vivo
Disease
System
Target
Replacement
Deficiency
Expression
Mutations
Fecha de publicación : 
2018
ISSN : 
2041-1723
Nota: 
This is an open access article distributed under the Creative Commons: Atribution License (cc BY)
Cita: 
Zabaleta-Lasarte, N. (Nerea); Barberia, M.; Martin-Higueras, C.; et al. "CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I". Nature communications. 9, 2018, 5454
Resumen
CRISPR/Cas9 technology offers novel approaches for the development of new therapies for many unmet clinical needs, including a significant number of inherited monogenic diseases. However, in vivo correction of disease-causing genes is still inefficient, especially for those diseases without selective advantage for corrected cells. We reasoned that substrate reduction therapies (SRT) targeting non-essential enzymes could provide an attractive alternative. Here we evaluate the therapeutic efficacy of an in vivo CRISPR/Cas9-mediated SRT to treat primary hyperoxaluria type I (PH1), a rare inborn dysfunction in glyoxylate metabolism that results in excessive hepatic oxalate production causing end-stage renal disease. A single systemic administration of an AAV8-CRISPR/Cas9 vector targeting glycolate oxidase, prevents oxalate overproduction and kidney damage, with no signs of toxicity in Agxt1(-/-) mice. Our results reveal that CRISPR/Cas9-mediated SRT represents a promising therapeutic option for PH1 that can be potentially applied to other metabolic diseases caused by the accumulation of toxic metabolites.

Ficheros en este ítem:
Vista previa
Fichero
pdf.pdf
Descripción
Tamaño
1.03 MB
Formato
Adobe PDF


Estadísticas e impacto
0 citas en
0 citas en

Los ítems de Dadun están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.