Effect of carbon content and cooling rate on the microstructure and hardness of TiC-Fe-Cr-Mo cermets
Palabras clave : 
Área de Ciencia y Tecnología de Materiales
TiC-Fe-Cr-Mo cermets; Sinter HIP; Continuous cooling treatments; Microstructure,CHROMIUM; BEHAVIOR
Sinter HIP
Continuous cooling treatments.
Microstructure.
Chromium.
Behavior.
Fecha de publicación : 
2024
ISSN : 
0263-4368
Nota editorial : 
Thisisanopenaccessarticleunderthe CC-BY-NC-ND license. (http://creativecommons.org/licenses/bync-nd/4.0/).
Cita: 
Navarrete-Cuadrado, J. (Jazmina); Soria-Biurrun, T. (Tomás); Lozada-Cabezas, L. (Lorena Josefina); et al. "Effect of carbon content and cooling rate on the microstructure and hardness of TiC-Fe-Cr-Mo cermets". International journal of regractory metals and hard materials. 119, 2024, 106552 - *
Resumen
TiC-FeCrMo cermets have been obtained in fully dense form by Sinter HIP at 1400 degrees C. Significant microstructural changes have been observed in these materials for relatively small variations in their carbon content after sintering. In the cermets with higher carbon content Cr-rich likely M7C3 carbides are observed to precipitate at the (Ti1-x,Mo-x)(y)C-z - metal interface. In addition, these cermets present a significant amount of retained austenite as part of the metal matrix. No retained austenite and many fewer M7C3 carbides are found in alloys with a reduction of 0.2 wt% in the total C content. Continuous cooling diagrams have been obtained from an austenitizing temperature of 950 degrees C. Hardness increases by 30% with respect to that of as sintered specimens after cooling at 1 degrees C/s confirming that these TiC-FeCrMo cermets are suitable for hardening by air-quenching. At this cooling rate, it is observed that the relatively small carbon changes mentioned before have a significant effect on the bainitic transformation, displacing its onset to higher temperatures as the C content is reduced. Slower cooling rates result in complex microstructures, in which, in addition to martensite, ferritic bainite, M7C3 and M23C6 carbides are also found. Microstructure and hardness of TiC-FeCrMo materials can be modified by the use of standard heat treatments to obtain a wide variety of mechanical properties suitable for certain hot rolling applications.

Ficheros en este ítem:
Vista previa
Fichero
pdf.pdf
Descripción
Tamaño
17.85 MB
Formato
Adobe PDF


Estadísticas e impacto

Los ítems de Dadun están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.