Comunicaciones a congresos, Conferencias, … (Fac. de Ciencias)

Permanent URI for this collectionhttps://hdl.handle.net/10171/70279

See

Results

Now showing 1 - 10 of 131
  • Thumbnail Image
    Resilient and adaptive renovation of 20th century buildings towards net-zero carbon built heritage – The approach of the SINCERE research project
    (2024-06-19) Tziviloglou, E. (E.); Stentoumis, C. (C.); Alvarez-Galindo, J.I. (José Ignacio); Stathopoulos, E. (E.); Diplaris, S. (S.); Sfetsos, A. (A.); Vlachogiannis, D. (D.); Karatasios, I. (I.)
    In contemporary European urban landscapes, the presence of 19th and 20th-century modern period architecture stands as a defining characteristic, contributing significantly to EU Built Heritage. These structures serve as substantial reflections of local and national identity. However, despite their historical significance, many of these buildings present considerable challenges in terms of energy efficiency, particularly in heating and cooling systems. Addressing this issue is crucial for preserving their cultural value while aligning with contemporary sustainability goals. The SINCERE project endeavors to explore the intrinsic worth of Built Heritage while offering practical solutions to improve energy performance and reduce the carbon footprint of historic buildings. Through the integration of innovative restoration materials, energy-efficient technologies, ICT tools, and socially innovative approaches, SINCERE aims to facilitate the transition of these structures towards net-zero carbon emissions. Adopting a holistic approach, the project encompasses various scales, from individual building components to entire cityscapes, considering factors such as structural integrity, architectural uniqueness, and local environmental conditions. Additionally, SINCERE aims to empower stakeholders with innovative solutions covering the entire lifecycle of buildings, from restoration to maintenance. By providing sustainable restoration options and raising awareness through outreach, the project fosters a culture of preservation within European communities, securing the legacy of Cultural Heritage for future generations.
  • Thumbnail Image
    Estudio de la flora vascular y la micobiota micorrícica en quemados truferos de Navarra (España)
    (Comunità Montana dei Monti Martani Serano e Subasio, 2010) Cavero-Remon, R.Y. (Rita Yolanda); Gonzalez-Armada, M. (MB); Miguel-Velasco, A.M. (Ana Maria) de
    In spite of the continuous advances in trufficulture there are still many questions about truffle growing, hence the big importance of studying the characteristics of the environment in which it best develops. In this study we have analysed the main ecological characteristics of the vascular flora growing in 24 holm oak brûles. This flora is special, very influenced by the alelopatic substances produced by the mycelium of the fungus, modifying the composition and the characteristics of the flora. As a result, plants grow smaller and with a lower covering. Sometimes they even present changes in their life-cycle. Therophytes typical of disturbed areas are dominant in plantations. Xerophile plants are also common. Besides, the species found in truffiers are proper of shaken, removed and generally sunny, dry and stony places, and many of them weeds. This corroborates the fact that the brûle is a very disturbed environment, both by fungus mycelium as by human intervention. On the other hand, monitoring the mycorrhizae is very important in truffle growing since it allows us to know if the plantations are properly developing or if truffle mycorrhizae have been replaced by other competing fungi. That is why we have carried out a below-ground study of the mycorrhizae appearing in the roots of the same holm-oaks, to check the presence of truffle mycorrhizae and to know if other mycorrhizal fungi are colonizing the roots.
  • Thumbnail Image
    Actividad trufícola navarra. Cuestiones sin respuesta
    (Comunità Montana dei Monti Martani Serano e Subasio, 2010) Saez, R. (Raimundo); Miguel-Velasco, A.M. (Ana Maria) de
    In Navarra, first plantations were carried out in 1989. The ignorance about truffle and trufficulture was total. Almost everything about truffle was unknown, almost even its existence, but as a consequence of the permanent search for new crops that contribute to diversify and improve agricultural productions of the region, it was decided with great interest to carry out the first plantations, and find information, mainly in France and Italy. Twenty years have passed. Technical and scientific advances have taken place but there are still many doubts. The expectations raised at first have not been reached in many cases. In spite of that, trufficulture is a reality, that covers important areas in those zones suitable for truffle growing, both in Navarra and in Spain, and it is still increasing. In Navarra, with the experience acquired, a few points can be made: • Mycorrhized plant production has evolve positively in Spain, which guarantees one of the most important factors in the reasonable trufficulture, together with land selection, climate or cultivation techniques. • The soil: lands selected for new plantations suit truffle needs. They are bigger plots, which is favourable to the correct management of plantation. • Irrigation: in new trufficulture the irrigation studies and practice have become very necessary. The experimentation in this subject is necessary to cover crop needs. • Spreading and training: promoting trufficulture as a diversification alternative in rural areas has been the aim reached through courses, trips, conferences, festivals, commercial exhibitions, competitions…, which has culminated with the creation of the first Truffle Museum in Spain.
  • Thumbnail Image
    Transforming waste red mud into sustainable cementitious materials for self-cleaning applications
    (2024-12-11) Alvarez-Galindo, J.I. (José Ignacio); Navarro-Blasco, I. (Iñigo); Pavia, S. (Sara); Kaur, G. (Gurbir); Fernandez-Alvarez, J.M. (José María)
    The development of novel catalysts and photocatalytic materials is an active area of study in the field of remediation of air pollution. The aim of this study is to investigate the potential of red mud-based cement mortars for photocatalytic abatement of nitrogen oxides (NO and NOx) under solar irradiation. Red mud is an industrial by-product generated during the Bayer process for refining bauxite into alumina. It poses significant environmental challenges due to its highly alkaline nature and presence of toxic heavy metals. Typically, hematite (α-Fe2O3) and goethite (α-FeOOH) are the compounds or iron oxide phases which are found in abundance in red mud. Interestingly, hematite is a nontoxic and stable compound, which possesses a visible light active band gap and can be a potential catalyst for photocatalytic activity.
  • Thumbnail Image
    Potential use of red mud in cementitious materials for environmental remediation
    (2024-10-21) Alvarez-Galindo, J.I. (José Ignacio); Navarro-Blasco, I. (Iñigo); Pavia, S. (Sara); Kaur, G. (Gurbir); Fernandez-Alvarez, J.M. (José María)
    Red mud (RM), an industrial waste derived from aluminum production, is a significant environmental concern due to its high alkalinity and large volumes. However, RM can be leveraged in the construction industry for wide variety of applications, including production of low-carbon cementitious materials and for environmental remediation. Using RM as a cement replacement reduces the need for raw materials typically used in cement production, such as limestone and clay. This helps conserve natural resources and reduces the environmental impact of mining. At the same time, it addresses other environmental concerns simultaneously by reducing waste and potentially lowering the carbon footprint of construction industry. This study explores the photocatalytic performance of RM, and its subsequent use in cementitious materials as partial cement replacement. Red mud is rich in iron oxide, which is distributed in mineral phases such as hematite (Fe2O3) and goethite (FeOOH). Hematite (α-Fe2O3) is the most stable form of iron oxide and can be significant for photocatalytic applications point of view. In the initial phase of this study, the photocatalytic activity of RM was assessed by means of an abatement test to measure NOx reduction in solar irradiation. It was observed that RM has a potential of photocatalytic removal of nitrogen oxides, attributed to the adsorption of NO and NOx, as well as their subsequent photocatalytic degradation. In second stage of the study, RM-based cement mortars were prepared, and based on variables i.e., RM’s substitution levels as cement replacement, workability and compressive strength of mortars were investigated. The thermal properties and phase transitions of the investigated mortars were studied using thermogravimetric analysis (TGA). The compressive strength of RM-cement mortar at 28 days with optimal conditions (5% RM substitution) i.e., C3R5 is 31.19 MPa, showing 41% improvement over standard cement mortar. Scanning electron microscope (SEM) micrographs reveal abundant hydration products and strong interfaces in C3R5. By offering an environmentally friendly solution to RM management while simultaneously creating useful construction materials, this study represents a significant step towards more sustainable industrial practices and resource utilization.
  • Thumbnail Image
    Optimization of Air Lime Concrete and Air Lime-based Ternary Mixtures with Sustainable Additives for Enhanced Performance in Heritage Buildings
    (2024-10-21) Alvarez-Galindo, J.I. (José Ignacio); Kyriakou; Çam, E. (Elif); Navarro-Blasco, I. (Iñigo); Fernandez-Alvarez, J.M. (José María)
    The urgent need for sustainable, carbon-negative construction materials has been intensified due to global warming (Barbhuiya, 2023; Haik, 2020). Historic buildings face unique challenges in integrating eco-friendly parameters due to the necessity of compatibility of new materials with historic structures and mitigating their long-term impacts (ICOMOS, 2003). The replacement of OPC with lime in concretes and mortars enables lower carbon emissions and compatibility with historic buildings, although it exhibits higher porosity, water absorption and lower compressive strength than OPC (González-Sánchez, 2021; Rosell, 2023; Velosa, 2009). In this case, admixtures are used to improve the performance of lime-based mixes (Grist, 2013; Seabra, 2009). The study focuses on optimising lime concrete and air lime-based ternary mixes by incorporating eco-friendly additives, as different pozzolanic agents and fibres, to enhance their physical and mechanical properties to be used in restoration works. Silica fume, which is a by-product, and natural volcanic ash were selected as pozzolanic agents and added in different percentages between 0–30%. Hemp and basaltic fibres were included in 1%. The study evaluated the effects of different binders and additives through analyses such as fluidity, water retention, and setting time, also compressive strength tests (7th-28th days). The fresh state analyses revealed that adding silica fume reduced the slump values of the mortars by 13%, whereas volcanic ash and fibres had no significant impact on these values. It was also observed that mixtures containing volcanic ash exhibited lower water retention than those with silica fume. Additionally, the inclusion of basalt fibres reduced water retention in the lime-based ternary mortar by up to 4% compared to those containing hemp fibres. According to mechanical tests, cement and silica fume contributed to the compressive strength values of lime-based mixtures. However, volcanic ash and fibres negatively affected compressive strength values in the early stage. As a conclusion, using silica fume and cement in lime-based mixtures reduces the workability of mortars, contrary to volcanic ash and fibres, while increasing mechanical properties even in the early stages.
  • Thumbnail Image
    Preparation of multifunctional superhydro- and hydro-oleophobic coatings with self-cleaning capacities for construction materials
    (2024-10-21) Alvarez-Galindo, J.I. (José Ignacio); Navarro-Blasco, I. (Iñigo); Tena-Santafé, V.M. (Víctor M.); Fernandez-Alvarez, J.M. (José María)
    Versatile coatings were developed to protect mortar surfaces across a broad range of applications, from preserving architectural heritage to modern civil engineering projects. These coatings utilize super-hydrophobic (SPHB) and hydro-oleophobic (OHB) materials, incorporating a nanostructured photocatalyst (Bi2O3-ZnO 8/92). To prevent the aggregation of the nanophotocatalyst, non-ionic dispersants such as Brij35, TritonX-100, and Tween20 were added. The coatings were applied to lime and limecement mortar substrates, and their properties¿such as hydro- and oleo-repellence, photocatalytic activity (through NOx abatement studies), and self-cleaning performance (dye degradation studies)¿were evaluated. Generally, mortars with SPHB coatings exhibited higher photocatalytic activity compared to those with OHB coatings. To simulate real-world conditions, the samples underwent artificial climate aging to assess their durability. Microstructural examination by SEM was addressed to evaluate the alteration degree of the coatings. Their retained effective hydrophobic properties, photocatalytic activity, and self-cleaning performance even after accelerated weathering tests. Future studies aim to apply these coatings to earthen mortars and earthen building materials, in particular by improving the hydrophobicity of the materials.
  • Thumbnail Image
    Vaterite Calcined Clay Cement (VC3) as a Low-Carbon Solution
    (2024-10-21) Alvarez-Galindo, J.I. (José Ignacio); Kyriakou; Rubio-Aguinaga, A. (Andrea); Navarro-Blasco, I. (Iñigo); Nofalah, M.H. (Mohammad Hossein); Fernandez-Alvarez, J.M. (José María)
    Climate change, driven by rising CO2 levels, is a critical global challenge. Portland cement production, exceeding 4 Gt/year with demand projected to rise by 50%, significantly contributes to this issue. Consequently, there's growing interest in developing low-carbon cementitious binders to reduce the construction industry's environmental impact. This study explores vaterite, a metastable calcium carbonate polymorph, for its potential to enhance cementitious materials' sustainability and performance. Vaterite Calcined Clay Cement (VC3) is investigated as a lowCO2 alternative to traditional cement. Vaterite can sequester approximately 0.44 kg CO2 per kg produced and potentially has a lower manufacturing carbon footprint. Recent advancements have made large-scale vaterite production economically viable, contributing to significant CO2 emission reductions. A scalable vaterite production method was applied utilizing a rapid precipitation technique involving mixing at a 2:1:1 molar ratio of K2CO3, CaCl2, and NH4Cl solutions, followed by filtration and ethanol treatment. This method yields high-purity vaterite making it well-suited for cement applications. The study investigated the effects of varying vaterite content, cement reduction levels, and Metakaolin-to-Vaterite (MK/V) ratios on the compressive strength, and fresh state characteristics of VC3 formulations. Results demonstrated an enhancement of long-term compressive strength (ca. 60% to 80%) of OPC mortar at 28 days when replacing calcite with vaterite up to 15%. Reduction in cement content to 45% and 40% of the total binder proportion, resulted in average compressive strength decreases of 17% and 23%, respectively. Furthermore, results demonstrated that by decreasing MK/V ratio from 3 to 1, compressive strength increases from 20MPa to ca. 27 MPa, that indicates potential pathways for more sustainable formulations. Rheological analysis demonstrated that vaterite improves flowability about 5% compared to calcite, addressing a challenging aspect of traditional Limestone Calcined Clay Cement (LC3) systems. By increasing MK/V ratios from 1 to 3 a decrease in workability of ca. 6% is observed. The effectiveness of polycarboxylate ether (PCE) superplasticizer in enhancing rheology was confirmed across various mix designs. This comprehensive approach to VC3 optimization offers promising pathways for developing high-performance, low-carbon cementitious materials, contributing to the sustainable future of the construction industry and potentially enabling carbon capture at gigaton scales.
  • Thumbnail Image
    Optimized Phase Change Material-Enhanced Lime Renders for Energy-Efficient Building Envelopes: Thermal and Durability Characterization
    (2024-10-21) Alvarez-Galindo, J.I. (José Ignacio); Kyriakou; Rubio-Aguinaga, A. (Andrea); Navarro-Blasco, I. (Iñigo); Fernandez-Alvarez, J.M. (José María)
    The construction sector's substantial contribution to global energy consumption and carbon emissions necessitates the development of innovative, sustainable building materials (PachecoTorgal et al., 2014; UN Environment Programme, 2019; Fei et al., 2021). Lime mortars, traditionally used as renders for building envelopes, are experiencing renewed interest due to their low environmental impact and compatibility with heritage conservation (Campo and Grosso, 2022; Manoharan and Umarani, 2022; Rodriguez-Navarro et al., 2023). This research focuses on the optimization of lime renders through the incorporation of microencapsulated Phase Change Materials (PCMs), specifically PCM24 and PCM18, which exhibit melting temperatures of 24°C and 18°C, respectively. These PCMs are designed to enhance thermal regulation in different climatic zones by storing and releasing heat at temperatures critical to building comfort (Saffari et al., 2017; Li et al., 2021). The optimized lime renders were formulated with the simultaneous addition of a superplasticizer, an adhesion booster, and a pozzolanic agent, ensuring improved workability, adhesion, and durability, key factors for their application in building envelopes. This study emphasizes the need to not only improve the energy efficiency of the material but also ensure its long-term durability, as sustainable construction requires materials that maintain performance over extended periods (Cunha, Aguiar and Ferreira, 2017).