Paiva, U. (Úrsula)

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Excessive body weight in developmental coordination disorder: A systematic review and meta-analysis
    (Elsevier, 2024) Rodríguez Romero, D. (Diana); Cortese, S. (Samuele); Arrondo, G. (Gonzalo); Magallon-Recalde, S. (Sara); Gambra, L. (Leyre); Gándara, C. (Carmen); Lizoain, P. (Pablo); Paiva, U. (Úrsula)
    Evidence on the link between developmental coordination disorder (DCD) and obesity and overweight is mixed. Based on a pre-registered protocol (PROSPERO: CRD42023429432), we conducted the first systematic review/meta-analysis on the association between DCD and excessive weight. Web of Science, PubMed and an institutional database aggregator were searched until the 18th of December 2023. We assessed study quality using the Newcastle-Ottawa Scale and study heterogeneity using Q and I2 statistics. Data from 22 studies were combined, comprising 11,330 individuals out of which 1861 had DCD. The main analysis showed a significant association between DCD and higher body weight (OR:1.87, 95 % CI =1.43, 2.44). Meta-regression analyses indicated that the relationship was mediated by age, with stronger effects in studies with higher mean age (p 0.004). We conclude that DCD is associated with obesity and overweight, and this association increases with age. Our study could help to implement targeted prevention and intervention measures.
  • Thumbnail Image
    The association between loneliness and technology-related addictions: a systematic review and meta-analysis
    (2024-06-06) Normand, E. (Enrique); Martín-Vivar, M. (María); Arrondo, G. (Gonzalo); San-Martín, L. (Leyre); Contreras-Chicote, M. (María); Beranuy, M. (Marta); Paiva, U. (Úrsula); Mestre-Bach, G. (Gemma); Mallorqui, N. (Nuria)
    Abstract: Introduction: Loneliness is defined as an unpleasant emotional response to perceived isolation and it greatly diminishes quality of life. Loneliness may lead individuals to spend more leisure time with technology and increase their risk of addiction. Similarly, when individuals have an addiction problem they may feel more isolated and lonely. Methods: In the present systematic review and meta-analysis, which was pre-registered in PROSPERO (CRD42023390483), we quantify the degree of association between technology-related addictions and loneliness. We searched on three databases on March 2024 for references that compared the degree of loneliness in a group of individuals with addiction and without addiction. Means and standard deviations of loneliness, or, alternatively, odds ratios, were transformed into Cohen´s d for statistical pooling through a random effects model Results: After screening 2369 reports, we extracted data from 25 studies. The total number of individuals across studies was 37261. Participants were between 13 and 30 years of age (median 20). Thirteen studies were centred in internet addiction, four research pieces studied gaming and three problematic smartphone use. Coherently, the most frequently used scale to identify addiction was the Internet addiction scale (IAS) (Young, 1998). Loneliness was typically quantified using a variant of the University of California Loneliness Scale (UCLA-LS) (Russell, 1996). The pooled difference between those with and without addiction yielded a standardized effect (Cohen´s d) of 0.52 (95% CI 0.35-0.69). While heterogeneity was high, there was no indication of publication bias/small sample bias. Similar differences were found when limiting to specific groups of addictions. Moreover, meta-regressions did not show an effect of age, sex or scale. Individuals with addiction obtained 48.62 (43.44-53.8) points in the UCLA-LS on average, compared to 42.68 (36.74-48.62) in individuals without addiction (SMD 5.63, 95% CI=2.94-8.31). Conclusion: Our key analyses indicate that individuals with technology-related addictions had greater feelings of loneliness. The effect could be characterized as moderately sized. Acknowledgements Gonzalo Arrondo Arrondo is supported by the Ramón y Cajal grant RYC2020‐030744‐I funded by MCIN/AEI/ 10.13039/501100011033 and by “ESF Investing in your future”; and the 2022-2023 Institute for Culture and Society (ICS) challenge on "Youth, relationships and psychological well-being" of the University of Navarra. Ursula Paiva is supported by FUNCIVA, Proeduca and UNIR. Gemma Mestre-Bach was supported by the 2022–2023 Institute for Culture and Society (ICS) challenge on “Youth, relationships and psychological well-being” of the University of Navarra.
  • Thumbnail Image
    Prevalencia de trastornos mentales en estudiantes universitarios: umbrella review
    (2024-06-06) Eudave-Ramos, L.H. (Luis Humberto); Cortese, S. (Samuele); Arrondo, G. (Gonzalo); Moncada, A; Magallon-Recalde, S. (Sara); Flor, M. (Martina); Sobrino, A. (Ángel); Piqué, I.M. (Isabella M.); García, S. (Sara); Lecumberri, A. (Arturo); Paiva, U. (Úrsula); Mestre-Bach, G. (Gemma)
    Introducción El estado de la salud mental de los estudiantes universitarios es una preocupación actual debido a la alta prevalencia de trastornos mentales encontrada en investigaciones realizadas a nivel internacional. 1, 2, 3 Hasta donde sabemos, este es el primer umbrela review de metaanálisis realizado en este tema. Objetivo Sintetizar los datos internacionales sobre prevalencia de trastornos mentales en población universitaria por medio de un umbrella review. Método Se buscaron revisiones sistemáticas con metaanálisis a partir de bases de datos reconocidas. Tras una fase de cribado y selección, los datos de los estudios primarios fueron recopilados de los textos completos de los metaanálisis respectivos, y se complementaron con una búsqueda adicional de información en los estudios primarios. Se sintetizaron las prevalencias de los diferentes trastornos en STATA 18 utilizando modelos de efectos aleatorios, y se llevaron a cabo análisis de meta-regresión y subgrupos para estudiar el efecto específico de factores concretos (principalmente porcentaje de mujeres, año de publicación, si se llevó a cabo durante el periodo pandémico, o si los participantes eran estudiantes de grados sanitarios). Resultados Se identificaron 2154 efectos a partir de 1714 estudios primarios encontrados en 62 metaanálisis. En cuanto a depresión (k=952 estudios; n=2,108,813), se encontró que el 35.41% (Intervalo de Confianza 33.9% - 36.93%) presenta síntomas leves de depresión; el 24.54% moderados (21.27 - 27.96); y el 13.42% graves (8.03 – 19.92). Se encontraron diferencias estadísticamente significativas durante el Covid-19 (más síntomas de depresión durante la pandemia). Con respecto a ansiedad (k=433; n=1,579,780), el 40.21% de los estudiantes universitarios (37.39 – 43.07) presenta síntomas leves de ansiedad; el 28.18% moderados (24.86 – 31.61); y el 16.79% graves (7.21 – 29.29). En trastornos del sueño (k=163; n=203,713), el 41.09% (35.7 – 46.58) presenta síntomas leves; 23.3% moderados (20.78 – 25.92); y 13.02% graves (10.96 – 15.22). Se encontraron diferencias significativas (más problemas de sueño) durante el Covid-19, en estudiantes de grados sanitarios, y en mujeres. Con respecto a otras patologías: trastornos de la conducta alimentaria (k=134; n= 147,333; 17.94%; IC 15.79 – 20.20%); trastorno de juego (k=75; n= 2,236; 6.59%; IC 5.52 – 7.75%); y trastorno por estrés postraumático (k=46; n= 108,898; 25.13%; IC 20.55 – 30.02%). En cuanto a otras condiciones que afectan a la salud mental de los estudiantes: estrés (k=58; n=43,027; 36.34%; IC 29.36 – 43.62%), ideación suicida e intentos de suicidio. Los datos sobre suicidio se clasificaron en cuatro categorías: ideación en los últimos 12 meses (k=95; n=809,986; 10.76%; IC 9.53 – 12.06%); ideación a lo largo de toda la vida (k=30; n=470,397; 20.33%; IC 16.15 – 24.86%); intento de suicidio en los últimos 12 meses (k=23; n=604,300; 1.37%; IC 0.67 – 2.29%) e intento de suicidio a lo largo de toda la vida (k=31; n=467,495; 3.44%; IC 2.48 – 4.54%). Conclusiones Los resultados indican una alta prevalencia de psicopatología en universitarios y, en algunos casos, se vio un incremento significativo durante la pandemia del Covid-19. Se identificaron ciertas limitaciones en los metaanálisis, tales como la ausencia de puntos de corte definidos para categorizar la gravedad de los síntomas y la carencia de metaanálisis que evalúen la prevalencia de otros trastornos mentales entre estudiantes universitarios. Referencias 1. Sheldon, E. et al. Prevalence and risk factors for mental health problems in university undergraduate students: A systematic review with meta-analysis. J. Affect. Disord. 287, 282–292 (2021). 2. Storrie, K., Ahern, K. & Tuckett, A. A systematic review: Students with mental health problems-A growing problem. Int. J. Nurs. Pract. 16, 1–6 (2010). 3. Auerbach, R. P. et al. Mental disorders among college students in the World Health Organization World Mental Health Surveys. Psychological Medicine vol. 46 2955–2970 (2016).