Robust active learning with binary responses

dadun.citation.endingPage14es_ES
dadun.citation.number220es_ES
dadun.citation.publicationNameJournal of Statistical Planning and Inferencees_ES
dadun.citation.startingPage1es_ES
dc.contributor.authorLópez-Fidalgo, J. (Jesús)
dc.contributor.authorWiens, D.P. (Douglas P.)
dc.date.accessioned2022-08-04T12:49:59Z
dc.date.available2022-08-04T12:49:59Z
dc.date.issued2022
dc.description.abstractWe introduce a method of Robust Learning (‘robl’) for binary data, and propose its use in situations where Active Learning is appropriate, and where sampling the predictors is easy and cheap, but learning the responses is hard and expensive. We seek robustness against both modelling errors and the mislabelling of the binary responses. Thus we aim to sample effectively from the population of predictors, and learn the responses only for an ‘influential’ sub-population. This is carried out by probability weighted sampling, for which we derive optimal ‘unbiased’ sampling weights, and weighted likelihood estimation, for which we also derive optimal estimation weights. The robustness issues can lead to biased estimates and classifiers; it is somewhat remarkable that our weights eliminate the mean of the bias – which is a random variable as a result of the sampling – due to both types of errors mentioned above. These weights are then tailored to minimize the mean squared error of the predicted values. Simulation studies indicate that when bias is of significant concern, robl allows for substantial reductions, relative to Passive Learning, in the prediction errors. The methods are then illustrated in real-data analyses.es_ES
dc.description.noteThis is an open access article under the CC BY-NC-ND licensees_ES
dc.description.sponsorshipJesús López–Fidalgo is sponsored by Ministerio de Economía y Competitividad, Spain MTM2016-80539-C2-1-R and by Program Salvador de Madariaga PRX18/00339. The research of Douglas P. Wiens is supported by the Natural Sciences and Engineering Council of Canada. The authors thank Linglong Kong, José Moler, Haiying Wang and Zhichun Zhai for helpful comments.es_ES
dc.identifier.citationLópez-Fidalgo, J. (Jesús); Wiens, D.P. (Douglas P.). "Robust active learning with binary responses". Journal of Statistical Planning and Inference. (220), 2022, 1 - 14es
dc.identifier.doi10.1016/j.jspi.2022.01.004
dc.identifier.issn0378-3758
dc.identifier.urihttps://hdl.handle.net/10171/63880
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.centerEscuela de Ingeniería - TECNUN
dc.relation.departmentDepartamento de Organización industrial
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectLogistic regressiones_ES
dc.subjectLoss functiones_ES
dc.subjectMislabellinges_ES
dc.subjectOptimal subsamplinges_ES
dc.subjectProbit regressiones_ES
dc.subjectSequential samplinges_ES
dc.titleRobust active learning with binary responseses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dspace.entity.typePublicationes
relation.isAuthorOfPublication169ec035-21e6-475f-be38-215b04163b04
relation.isAuthorOfPublicatione36bb69a-1713-4607-8d8a-1fde7b616e15
relation.isAuthorOfPublication.latestForDiscovery169ec035-21e6-475f-be38-215b04163b04

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
1-s2.0-S0378375822000040-main.pdf
Size:
1.6 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Item-specific license agreed upon to submission
Description: